Human Infants' Learning of Social Structures: The Case of Dominance Hierarchy
Olivier Mascaro and Gergely Csibra
Psychological Science published online 12 November 2013
DOI: 10.1177/0956797613500509

The online version of this article can be found at:
http://pss.sagepub.com/content/early/2013/11/08/0956797613500509

Published by:
SAGE
http://www.sagepublications.com

On behalf of:
Association for Psychological Science

Additional services and information for Psychological Science can be found at:

Email Alerts: http://pss.sagepub.com/cgi/alerts
Subscriptions: http://pss.sagepub.com/subscriptions
Reprints: http://www.sagepub.com/journalsReprints.nav
Permissions: http://www.sagepub.com/journalsPermissions.nav

>> OnlineFirst Version of Record - Nov 12, 2013

What is This?
Animal species, including humans, recognize social structures, such as social-dominance hierarchies, without formal teaching or supervised training (Bergman, Beehner, Cheney, & Seyfarth, 2003; Boehm, 1999; Fiske, 1992; Grosenick, Clement, & Fernald, 2007; Paz-y-Miño, Bond, Kamil, & Balda, 2004). This capacity is remarkable because the range of possible social structures is extremely vast. For example, n individuals all related to each other could, in theory, form 2^{n-1} different dominance structures. Assessing the likelihood of each of these theoretical possibilities seems intractable. Instead of this brute-force strategy, we hypothesize that learners use heuristics to discover social structures.

Just as complex problems can be simplified by dividing them into series of smaller problems that can be solved separately (Simon, 1962), dominance structures can be decomposed into sets of dyadic relations. Thus, instead of discovering a complete dominance hierarchy at once, one can construct it incrementally by uncovering dominance relations separately and combining them in a structure. Therefore, we hypothesized that if human infants represent dominance hierarchies, they should find it easier to build such structures incrementally as opposed to nonincrementally (Study 1).

Discovering a structure can also be facilitated by appropriate expectations about its shape. Social-dominance structures are often linear (Boehm, 1999; Caplan, Vespo, Pedersen, & Hay, 1991; Fiske, 1992; Hawley, 1999). Therefore, we hypothesized that if infants have expectations about the shape of dominance structures, they should find linear structures easier to process or more plausible than circular structures (Study 2).

To test these two hypotheses, we presented 15-month-old infants with a looking-time paradigm, capitalizing on infants’ tendency to look at a stimulus for a relatively longer duration when previously established dominance relations are reversed rather than confirmed (Mascaro &
Cibra, 2012; Thomsen, Frankenhuis, Ingold-Smith, & Carey, 2011). We defined dominance as the capacity to prevail when two agents have conflicting goals (Hand, 1986; Weber, 1946) and assumed that social structures involve at least three individuals (Flack & Krakauer, 2006).

General Method

Apparatus

Infants were tested in a dimly lit soundproof room in which they were seated on their caregiver’s lap 100 cm from a 40-in. LCD monitor on which the stimuli were presented. A hidden camera (temporal resolution = 25 frames per second) recorded infants’ looking behavior.

Stimuli and procedure

Caregivers were instructed to close their eyes during the procedure. Each infant was presented with three familiarization movies followed by a test movie, and then three more familiarization movies followed by another test movie. One test movie was coherent and the other was incoherent (the order of presentation was counterbalanced across participants). Details about counterbalancing are provided in the Stimuli and Procedure section of Supplemental Methods and Analyses in the Supplemental Material available online.

During each familiarization movie, two agents (rudimentary animal figures) competed to occupy a small marked area. The dominant agent monopolized the area by repeatedly pushing the subordinate agent away (see Video S1 in the Supplemental Material). Each of the three familiarization movies viewed by the infants involved a different pair of agents. In the test phase, infants viewed a movie in which two agents who had interacted in a previously viewed familiarization movie competed to collect one object. In coherent test movies, the previously dominant agent prevailed (see Video S2), and in incoherent test movies, the previously subordinate agent prevailed (see Video S3).

Coding and data analysis

Coding and data analysis are detailed in Coding and Data Analyses section of Supplemental Methods and Analyses in the Supplemental Material. All reported statistics are two-tailed.

Study 1

Several dominance relations can be represented independently (e.g., as A > B and B > C, assuming that “>” denotes a dominance relation and that A, B, and C represent different individuals) or in a single structure (e.g., as A > B > C). To assess which of these two systems infants employ, we varied the difficulty of forming an integrated representation of three relations by adapting a method from studies of adults’ reasoning (Ehrlich & Johnson-Laird, 1982; Foos, Smith, Sabol, & Mynatt, 1976; Halford, Wilson, & Phillips, 1998).

We assigned infants to one of two conditions. In the familiarization phase of the continuous-chain condition, infants viewed movies in an order whereby, for example, A dominated B in the first movie, B dominated C in the second movie, and C dominated D in the third movie. In the familiarization phase of the discontinuous-chain condition, infants were presented with the same movies but in a different order (e.g., A dominated B, C dominated D, and B dominated C). During the test phase, we probed infants’ memory for the relation between A and B. If infants memorize isolated relations (e.g., A > B, B > C, and C > D), the two conditions should be equally difficult. Alternatively, if infants integrate dominance relations into a single unified structure (e.g., memorizing A > B > C > D), the discontinuous-chain condition should be the more difficult of the two because it requires holding two independent relations in mind (A > B and C > D) and subsequently integrating them with the third relation (B > C). Conversely, in the continuous-chain condition, infants could add one agent to the structure at each step (representing A > B first, then A > B > C, and finally A > B > C > D).

Method

Participants. Two groups of 15-month-old infants participated (continuous-chain condition: \(n = 24 \), mean age = 467 days, range = 456–481 days; discontinuous-chain condition: \(n = 24 \), mean age = 468 days, range = 455–480 days).

Stimuli and procedure. In the familiarization phase of the continuous-chain condition, we presented dominance relations in two orders, such that 12 of the infants viewed movies that followed the A > B, B > C, C > D order and 12 infants viewed movies that followed the B > C, A > B, C > D order. In the familiarization phase of the discontinuous-chain condition, although infants were shown the same movies, the order in which B > C and C > D were presented was swapped. This procedure resulted in two orders of dominance-relation presentation in which 12 infants viewed movies that followed the A > B, C > D, B > C order and 12 infants viewed movies that followed the C > D, A > B, B > C order. By counter-balancing orders of presentation during the familiarization phase, we controlled for possible combinations of
Results and discussion

Significantly more infants looked longer at the incoherent test movie in the continuous-chain condition (19 out of 24 infants) than in the discontinuous-chain condition (11 out of 24 infants; \(p = .036 \), Fisher’s exact test). Planned comparisons indicated that infants looked longer at the incoherent test movie than at the coherent test movie in the continuous-chain condition (incoherent test: \(M = 17.6 \) s, \(SD = 9.2 \); coherent test: \(M = 11.6 \) s, \(SD = 9.5 \); \(p = .005 \), Wilcoxon signed-rank test) but not in the discontinuous-chain condition (incoherent test: \(M = 15.8 \) s, \(SD = 9.6 \); coherent test: \(M = 16.0 \) s, \(SD = 11.1 \); \(p = .84 \), Wilcoxon signed-rank test; see Fig. 1 for mean looking-time durations). Infants’ memory for the relation between A and B was better in the continuous-chain condition, compared with the discontinuous-chain condition, arguably because the continuous-chain condition made it easier for the infants to integrate several dominance relations into a single structure (for further evidence, see the Additional Experimental Attempts section of Supplemental Methods and Analyses in the Supplemental Material). Having learned about social relations, infants are then capable of integrating these relations into structures incrementally, relation by relation.

Study 2

In Study 2, we investigated infants’ expectations about the shape of social-dominance structures. Building on studies that have shown that adults find linear structures easier to process than circular structures (De Soto, 1960; Zitek & Tiedens, 2012), we tested whether infants expect dominance structures to be linear. During the familiarization phase of the linear condition, infants viewed movies in which A dominated B, B dominated C, and C dominated D, respectively. In the familiarization phase of the circular condition, infants viewed the same movies except that D was replaced by A and, thus, dominance relations were intransitive: A dominated B, B dominated C, and C dominated A. We then assessed infants’ memory for the relation between B and C. If infants find circular dominance structures less plausible or harder to process, their recognition performance should be lower in the circular condition.

Method

Participants. Two groups of 15-month-old infants participated (linear condition: \(n = 24 \), mean age = 471 days, range = 454–483 days; circular condition: \(n = 24 \), mean age = 468 days, range = 455–483 days).

Stimuli and procedure. In the linear condition, two orders of presentation were used: A > B, B > C, C > D for 12 participants and B > C, C > D, A > B for 12 participants. In the circular condition, infants saw the same movies in the same order but D was replaced by A. We examined infants’ memory for the relation between B and C in the tests of the two conditions. B and C represented both subordinate and dominant agents an equal number of times in the familiarization phase. Thus, it was impossible to recognize the relation between these two agents simply by assessing which agent was more likely to be the “pusher” versus the “pushee,” by tracking which agent was the most dominant of all, or by tracking which agent garnered more attention (for further assessment of the effect of attention, see the Attention Allocated to Dominant and Subordinate Agents section of Supplemental Methods and Analyses in the Supplemental Material).

Results and discussion

At the end of the last familiarization movie, infants looked for a significantly longer duration when transitivity was violated in the circular condition compared with when transitivity was not violated in the linear condition (circular condition: \(M = 9.18 \) s, \(SD = 1.50 \); linear condition: \(M = 7.36 \) s, \(SD = 2.63 \); \(p = .012 \), Mann-Whitney U test; see details and results of further analyses in the Study 2:
Additional Analyses section of Supplemental Methods and Analyses in the Supplemental Material). The number of infants who looked longer at the incoherent test movie tended to be higher in the linear condition (18 of 24 infants) than in the circular condition (11 of 24 infants; \(p = .075 \), Fisher's exact test). Planned comparisons indicated that infants looked longer at the incoherent test than at the coherent test in the linear condition (incoherent test: \(M = 18.45 \) s, \(SD = 11.14 \); coherent test: \(M = 13.41 \) s, \(SD = 10.68 \); \(p = .032 \), Wilcoxon signed-rank test) but not in the circular condition (incoherent test: \(M = 19.14 \) s, \(SD = 10.94 \); coherent test: \(M = 18.27 \) s, \(SD = 10.4 \); \(p = .84 \), Wilcoxon signed-rank test; see Fig. 1).\(^1\) The significantly different looking behaviors observed across conditions suggest that infants find circular dominance structures less plausible or harder to process than linear dominance structures. Infants thus have expectations about the configuration of dominance structures. Provided that these expectations are correct, they would facilitate infants' identification of dominance structures.

In Study 2, 15-month-old infants displayed sensitivity to the intransitivity of dominance relations by rejecting circular structures. Yet in Mascaro and Csibra (2012), 15-month-old infants observed A dominating B and B dominating C in one context during familiarization. These infants expected these two relations to be maintained in a novel context. However, there was no evidence that infants formed an expectation about the relationship between A and C in this same novel context. This discrepancy can be explained in two ways. First, in Study 2, the relations that served as potential premises (A > B and B > C) and the relation violating transitivity (C > A) were presented in the same context (in which agents competed to occupy an area). Conversely, in Mascaro and Csibra (2012), the relation violating transitivity was presented in a novel context and thus required infants both to draw a transitive inference and to generalize their expectation across contexts. Second, it is also possible that infants have expectations about, or representational constraints on, the shape of dominance structures without actively drawing transitive inferences. This would explain why, when they witnessed A dominating B and B dominating C, infants displayed no expectations about the relation between A and C in Mascaro and Csibra (2012) but found circular structures harder to process or less plausible in the research reported here.

Infants' sensitivity to transitivity as evidenced in our studies is much more precocious than that evidenced in studies of domain-general reasoning, which have shown no evidence of transitive reasoning before 4 years of age (Bryant & Trabasso, 1971; Piaget, 1947; Wright, 2012). This difference could come (a) from the fact that we tested infants' memory rather than active inferences, (b) from the use of a different method (a looking-time paradigm as opposed to explicit questions), or (c) from earlier development of sensitivity to transitivity in the social-dominance domain compared with other domains (for evidence of a similar discrepancy in the preference-recognition domain, see Mou, Province, & Luo, 2010).

Conclusion

Children participate in social hierarchies from an early age (Caplan et al., 1991; Hawley, 1999). Our findings demonstrate that infants also represent dominance structures using two heuristics: They combine representations of several dyadic relations, and they have expectations about the shape of the resulting structures. It is important to note that our data do not establish whether the mechanisms underpinning infants' representations of structures are domain general or specific to social dominance (for similar issues, see Grosenick et al., 2007; Paz-y-Miño et al., 2004). In particular, future research should investigate the relation between infants’ capacity to represent dominance structures and mechanisms supporting representations of “more” and “less” in domains such as number, size, or duration (Brannon, 2002; Fiske, 2004; Lourenço & Longo, 2011).

Dimensions organized on ordered scales, such as number, typically show symbolic distancing effects, such that elements that are farther away on the scale are more easily discriminated (Libertus & Brannon, 2009). Infants' representations of dominance structures have shown the opposite effect. After witnessing A dominating B and B dominating C, infants were less certain about the relation between A and C than about the relations between A and B or B and C (Mascaro & Csibra, 2012). Thus, infants may not represent dominance structures on an ordered scale (e.g., on a line). A directed graph (i.e., a network in which nodes represent agents and edges represent asymmetric relations of dominance) may be a better analogue of infants' representations of dominance structures. This representational format would be more flexible than would an ordered scale. For example, the format would allow for the representation of incomplete structures in which not all individuals are related by dominance relations, such as despotic structures, in which one agent dominates all other individuals but subordinates do not have defined dominance relations.

Our findings are consistent with proposals concerning early development of a “naive sociology” involving conceptual representations of social entities (Kinzler & Spelke, 2007; Mascaro & Csibra, 2012; Platten, Hernik, Fonagy, & Fearon, 2010; Thomsen & Carey, 2013). We found two signatures of the representation of social structures. First, infants' representations of structures were irreducible to a set of isolated representations of dyadic relations. Second, infants expected dominance structures
to have properties that none of the individual dominance relationships can possess, such as linearity. The capacity to combine simple elements into more complex patterned structures is crucial in domains as diverse as language, action planning, and scientific discovery. This capacity is evidenced early in the social domain.

Author Contributions

O. Mascaro and G. Csibra designed the studies. O. Mascaro collected and analyzed the data. O. Mascaro and G. Csibra drafted the manuscript.

Acknowledgments

We thank the participants, their parents, G. Brody, B. Kollod, W. Frankenhusi, M. Hernik, A. Kovacs, O. Morin, L. Thomsen, M. Toth, A. Volein, the Central European University Cognitive Science Department, three anonymous reviewers, and B. Ackerman.

Declaration of Conflicting Interests

The authors declared that they had no conflicts of interest with respect to their authorship or the publication of this article.

Funding

This work was supported by a Marie Curie Fellowship to O. Mascaro (PIEF-GA-2010-276077) and by a European Research Council Advanced Investigator Grant (OSTREFCOM) to G. Csibra.

Supplemental Material

Additional supporting information may be found at http://pss.sagepub.com/content/by/supplemental-data

Note

1. Looking times during the test phases of the discontinuous-chain and circular conditions, in which infants may have had low expectations about which agent would prevail, were relatively long and were not unlike looking times during the incoherent tests in the continuous-chain and linear conditions. Thus, in our studies, differences in looking times could have been driven more by facilitated processing of expected events in coherent tests than by violations of expectations in incoherent tests.

References

Supplemental Methods and Analyses

Stimuli and Procedure

Two different sets of animal figures and backgrounds were used, one for each sequence of three familiarization movies followed by a test. One set involved a rabbit, a piglet, a cat, a fish on a green and gray background, and the other set involved a duck, a turtle, a mouse and a penguin on a yellow and blue background. Each animal’s position in the hierarchy and the association between one set of agents/background and the coherence of the sequence were counterbalanced across participants. We used two types of familiarization movies in which the agents moved a slightly different manner to alleviate infants’ boredom. For each sequence of three familiarization movies, one version was used for two familiarizations, and the other for the other familiarization. Overall, types of familiarization movies were counterbalanced across subjects. Whether the dominant agent was on the left or on the right side of the screen at test and during familiarization was also counterbalanced across participants. Each particular test movie (e.g., a rabbit on the left dominating a pig on the right) was used once as coherent test movie (i.e., when the rabbit dominated the pig in familiarization), and once as an incoherent test movie (i.e. when the pig dominated the rabbit in familiarization).

Coding and Data Analyses

We analyzed frame-by-frame whether infants looked at the screen or looked away. Blinks were considered as looks away if they lasted for more than 0.2 seconds. To be included in the final data analysis, infants had to look for more than 50% of the duration of familiarization movies, and to look at the screen during the test when one of the agents made contact with the last object (i.e., when the conflict between the agents’ goals got resolved).
Infants who did not fulfill these two criteria were considered "inattentive" and were not included in data analysis. Infants who sucked their thumb for more than 80% of a test length were considered “drowsy” and were also excluded. In Study 1, 20 infants were excluded from analyses because of fussiness (12 infants), inattentiveness (4 infants), drowsiness (3 infants), and experimental error (1 infant). In Study 2, 21 infants were excluded from analyses because of fussiness (15 infants), inattentiveness (1 infant), drowsiness (2 infants), parental interference (1 infant), technical problems (1 infant) and experimental error (1 infant).

At the end of each familiarization animation, the movie froze for 5 seconds. Looking times were measured during this period for the last movie of each sequence of three familiarization movies. The addition of these two durations was used as a measure of infants’ looking to the familiarization outcome. In the test, infants’ looking times at the screen were measured from the moment one of the agents took the last object, till infants looked away for two seconds or more, or after 40 seconds elapsed since the end of agents’ movement. The first author coded the data. Twenty-five percent of data was also randomly selected and recoded by a second coder unaware of the hypothesis of the study (average $r = .98$, range = .96 to 1). When the difference between the values from the first and the second coder exceeded 20% of the first coder’s value, the discrepancy was resolved by discussion. Looking time data to the test departed from normality ($p < .05$ in all studies and in all conditions, except in the circular condition of Study 2, Shapiro-Wilk tests). Log-transformed data also departed from normality ($p = .021$ for the coherent test of the circular condition, and $p = .031$ for the coherent test of the discontinuous chain condition, Shapiro-Wilk tests). We thus used non-parametric tests on untransformed data to assess infants’ performance.

Study 2: Additional Analyses
In the circular condition, when C dominated A, transitivity was violated. However, the two agents’ roles were also reversed at the same time: a previously subordinate agent (C) dominated a previously dominant agent (A). This simultaneous reversal of two agents’ roles could have caused infants’ longer looking times. Fortunately, the discontinuous chain condition of Study 1 allowed us controlling for this potential confound. In the familiarization sequences of this condition transitivity was respected, but two agents’ roles were simultaneously reversed: A dominated B, C dominated D, and later B (a previously subordinate agent) dominated C (a previously dominant agent). Infants’ looking times to the end of familiarization sequences were longer in the circular condition than in Study 1’s discontinuous chain condition, (9.18 vs. 7.65, \(p = .021 \), Mann-Whitney U test). Infants’ longer looking times were thus elicited by a violation of transitivity, not by the simultaneous reversal of two agents’ roles.

Attention Allocated to Dominant and Subordinate Agents

We checked whether children looked more at the dominant or at the subordinate agent at test for theoretical (Chance, 1967) and methodological reasons. To do so, we coded the proportion of looking at each agent after the last object was collected till the end of the test. Double coding of 25% of randomly selected videos by a second coder blind to the hypothesis of the study confirmed that this measure was reliable (\(r = .97 \)). Infants did not look longer at the dominant than at the subordinate agent (out of the looking to one of the two agents, the average proportions of looking at the dominant agent were respectively .485 in continuous chain condition of Study 1, .518 in the discontinuous chain condition of Study 1, .501 in the linear condition of Study 2 and .497 in the circular condition of Study 2, all \(p s > .41 \); one-sample \(t \) tests against .5).
Additional Experimental Attempts

For readers interested in the limits of infants’ abilities, here is a description of additional experimental attempts. In these additional attempts, 15-month-olds saw series of familiarizations in which animal figures competed to stay in a little area, and tests in which animal figures competed to collect objects, exactly as in Studies 1 and 2.

In the first test of infant’s memory for a linear, continuous structure, we presented infants with three orders of presentation: A > B, B > C, C > D (continuous order 1), B > C, A > B, C > D (continuous order 2), and C > D, A > B, B > C (discontinuous order). In the test, infants saw B and C competing to get objects. B prevailed in coherent tests, and C prevailed in incoherent tests. Infants’ tendency to look longer at the incoherent test tended to be lower in the discontinuous order than in the continuous order 1 and 2. This first result suggested that infants attempted to integrate dominance relations into a single structure, and failed to do so when the structure was discontinuous. However, the relation between B and C was not presented at the same time point of the familiarization in each order: it was presented first in the continuous order 1, second in the continuous 2, and third in the discontinuous order. This order effect could have explained our results. Subsequently, we investigated this effect in a better controlled paradigm in Study 1.

Another pilot study investigated representation of dominance as an individual property. In the familiarization, one agent stood in the same relationship with three other agents (e.g., A dominated B, C, and D, or A was dominated by B, C and D). We then tested infants’ expectations about the relation A and a novel agent (E), and found no interpretable pattern of results. This result speaks to the possibility that infants could succeed in our task by tracking individual dispositions such as being “a pusher,” being “pushee,” or garnering attention by occupying the center of the stage. If this had been the case, infants should have formed strong expectations in this experiment.
References